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Abstract 

We investigate the restrictions on scalar-tensor theories of gravitation implied by the 
assumptions: (i) the field equations are derivable from an action principle, (ii) units of 
mass length and time are defined by atomic standards, and (iii) the principle of equivalence 
holds whenever gravitational self-energy can be neglected. We show that in all these 
theories the presence of gravitational energy in a system leads to violations of the principle 
of equivalence. 

The results of the Eotvos experiment may be interpreted to mean that 
different kinds of energy contribute to the inertial mass of a system the 
same amount as to the gravitational mass. The contributions to the inertial 
and gravitational masses of ordinary materials due to rest masses of  
particles, (nuclear) electrostatic energy, and nuclear energy, are equal to 
within 1 part  in 10 4, 1 part  in 106, and 1 part  in 10 s, respectively (Schiff, 
1959). Since the energies associated with the weak and gravitational 
interactions in pieces of ordinary materials are extremely small, the Eotvos 
experiments gives no direct evidence on how these energies contribute to 
the gravitational mass. However, if the rest mass energies of particles 
contain appreciable amounts of weak and gravitational self-energy, then 
the equality of inertial and gravitational mass of  particles indicates that the 
weak and gravitational energies contribute in the normal way. Just how 
much each kind of energy contributes to the rest mass of a particle is not 
known (and perhaps not knowable) and therefore we can only say that if 
we have a theory in which some forms of energy contribute to the gravita- 
tional mass in the 'wrong' way, then the fact that different particles fall 
with the same acceleration will be a profound mystery. The scalar-tensor 
theory of Brans & Dicke (1961) is such a theory. It  has been shown (Nord- 
vedt, 1969; Ohanian, 1971) that in this theory the inertial and gravitational 
mas~es differ by a term which is of the order of the gravitational self-energy. 
The fact that a principle of  equivalence for particles cannot be derived in 
this theory must be regarded as a serious defect. (In general relativity an 
exact principle of equivalence can be derived both in the classical and 
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quantum case no matter what self-energies are present.) In view of this 
difficulty one might ask what other scalar-tensor theories can be constructed 
and whether the principle of  equivalence holds exactly in any of them. 

In Section 1 we look for the most general scalar-tensor theory with 
(i) field equations derivable from an action principle, (ii) units of mass, 
length and time defined by atomic standards and (iii) a principle of  equiva- 
lence that applies to all forms of energy except gravitational energy. In 
Section 2 we show that in all these scalar-tensor theories the presence of 
gravitational self-energy necessarily leads to a violation of the principle of 
equivalence. 

1. Restrictions on Scalar-Tensor Theories 

We assume that 

(i) The gravitational fieM is described by a macroscopic, long-range tensor- 
fieM g,v and scalar fieM (~. The fieM equations are obtained by variation of an 
action integral which is invariant under general coordination transformations. 
The Lagrangian density contains first derivatives at most quadratically. 

This first hypothesis implies that the part of  the Lagrangian density 
which does not contain the matter variables can be written as# 

+--7+to4'"4" 2a(4)]V(-g) (11) 
where f ( 4 )  and A(4 ) are arbitrary functions of 4 and to is a constant. In 
general to could be a function of  4, but it is always possible to introduce a 
transformation of variables 4'  = 4'(4) such that in terms of the new scalar 
field 4 '  the Lagrangian density has the form given by (1.1) with to equal to 
a constant. 

(ii) Atomic standards are used to define units of  mass, length and time. 

As unit of mass we take the mass of one particular kind of particle. 
Because of assumption (iii) (see below) it is not important which particle 
we choose. For  simplicity we will use a neutral, massive spin-zero meson 
(e.g., the ~r ~ meson). As unit of  velocity we take the velocity of  light so that 
c = 1. This will give us a unit of time once we choose a unit of length. The 
use of an atomic standard of  length necessarily involves quantum mechanics. 
For  our unit of length we will use the Compton wavelength of the massive 
meson. This choice is (conceptually, if not experimentally) more convenient 
than the use of  the Bohr radius or the wavelength of  light emitted in a 
particular transition. 

Fierz (1956) has emphasized the importance of  (ii) for the physical 
interpretation of  the Jordan gravitational theory. The following argument, 

t We use a metric of signature + - - - ,  
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which is essentially that of Fierz, shows that our choice of units implies 
that the 'free' massive meson moves along the geodesics of gu,. 

The most general action for the meson field �9 compatible with (i) and 
the absence of  nongravitational interactions is 

f �89 (1.2) 

where f l ,  fz, f3 are functions of r and gu~ (fz may also depend on the 
derivatives of ~b and g,~). We can introduce a change of variables by 

Since 

= ~/(f~) ~ (1.3) 

f ~,.~,uh(q~,guv)dnx = -�89 f ~2[~,uh(c~,g~,v)],udgx (1.4) 

we can then express (2.2) in the form 

f � 8 9  ~,la _ m 2 c2/2 ~2] X/(_g ) d 4 (1.5) x 

where f2 is some new function of 6 and its derivatives. The field equation 
for q~ is (suppressing the bars) 

h 2 E]t2 b + m2c2f2t23 = 0 (1.6) 

where [-q~ = (-g)-l/2Ot~[gVV(-g)l/2Ov~ ]. Let us introduce a local geodesic 
reference frame by choosing the coordinates such that 

gn~ = 3u~ (1.7) 

where 3uv is the Lorentz metric. As is well known in the vicinity of any one 
point it is always possible to choose coordinates such that (1.7) holds and 
such that the first derivatives of the tensor field are zero. We then have 

h 2 O, u Ot a ~ -}- m 2 c2 f2  (jb = 0 (1.8) 

This shows that the meson moves as a free wave with a Compton wave- 
length 

h 
mca/(A) (1.9) 

Since this is to be constant by the definition of our unit of length, we must 
have 

f2 = 1 (1.10) 

Equation (1.6) then reduces to 

h 2 [~:~ + m 2 c 2 ~  = 0  (1.11) 
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In the classical limit the orbits of the particles are obtained by taking 
qD = exp(iS/h) in equation (1.11) and retaining only the terms of order 
zero in h. This gives the Hamilton-Jacobi equation 

-gU~ 0u S 0~ S + m 2 c 2 --- 0 (1.12) 

which shows that the particles move along the geodesics ofg , , .  

(iii) In a gravitational fieM all sufficiently small systems in which the gravita- 
tional self-energy can be neglected fall with the same acceleration. 

By 'sufficiently small' we mean that the system must be of a size which 
is small compared to the distance over which the external gravitational field 
varies appreciably; this implies that no tidal forces act on the system. For 
the purposes of hypothesis (iii) it will be assumed that the gravitational 
self-energy of the known 'elementary' particles can somehow be 
neglected. 

Since we have shown that the q~-particles move along the geodesics of 
gu- it follows from (iii) that all localized systems that do not contain gravi- 
tational self-energy move along these geodesics. The tensor gu~ therefore 
plays the role of metric, not only as far as the qS-particles are concerned but 
in general. The tensor g~v will be regarded as the metric of space-time. 

We next show that there are serious restrictions on the possible direct 
interactions between matter and the q~ field. This is not surprising: if the 

field is directly coupled to some material system, it would usually produce 
a deviation from geodesic motion for that system contradicting (iii). A 
precise and general argument showing this has been given by Bergmann 
(1968). The following is a somewhat more explicit calculation. 

Suppose that matter is described by a Lagrangian density cp,~ which 
depends, among other things, on ~ and derivatives of q~. The complete 
Lagrangian density is then (taking c = 1) 

16~- f((~)R + ~o + 2A(~) .V/(-g) + ~a,, (1.13) 

and the field equations for g~  and q~ are, respectively 

o9 
_R . .  + �89 R = 87r ~ f  + ~ (~b,t~ ~,~ _ �89 q~,~ ~,~) 

+ f ( f , m ~ _ g ~ , ~ f ) _ f g ~  (1.14) 

2o9 o9 ,IX t []4,-~2(~ 4 , , , - R f '  2A'-16~r c~,,  - 0s - - - 0 .  = 0  ( 1 . 1 5 )  
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where T ~ " =  -2(-g)-l/E(O/agvv)f~rn and the primes denote differentiation 
with respect to 4. Because of the identity (-Ru, + {gv, R);" = 0, equation 
(1.14) gives us a conservation theorem for the tensor Tv,: 

[ _T~ c~ 1 , 1 , 
0 = ,  v 8 ~ r  + ~ f ( 4 L , ~ . ~ - - z g , , ~ . ~ 4  ) + ~ . ( 4 . , ; , f  +4~.u4. . f  " 

,, ,~ A ];v 
--g~,,f '  []]~ - g u l f  ~.,,4 ) - f, gv.j (1.16) 

Carrying out the indicated differentiations and using equation (1.15) one 
finds that (1.16) can be written as 

. . r a S e m  _ O~l 
T.d = -~ , .  [ -~-~ - O. 0-~.. ] (I.17) 

This conservation law determines the equation of motion of the system. 
Suppose that the system finds itself in an external field g~, (we treat the 
system as a test particle and neglect the gravitational field produced by the 
system). If  we go to the local geodesic frame, equation (1.17) reduces to 

O.T "~ = -0"  4 - 0 . - -  (1.18) o4,.] 
and upon integration over the volume of the system: 

~pt~:_f al~4[~_- O~)mld3 O. a~,~] x (1.19) 

where P '  = f T "~ d3x is the momentum. This indicates that the system can 
experience an acceleration with respect to the local inertial frame unless we 
require that the integral on the right vanish identically. 

The restriction~ 

0 --]d3x=0 (1.20) 
forbids couplings of the type 'mass varying with q~', i.e., a term m 2 c 2 f2(4)~2 
such as appears in equation (1.6). This shows that it is unimportant which 
particle we use to define a unit of mass. We remark that our assumptions 
exclude a scalar-tensor theory constructed by Schwinger (1970) in which 
the function f2 of equation (1.6) depends on both 4 and R. 

Also forbidden are couplings of the type "coupling ""constant" varying 
with q~', i.e., the electromagnetic, strong and weak coupling constants 
cannot be functions of 4- Direct interaction of photons with 4 (a term 
h(r~)F~,~F ~ in the Lagrangian) is also excluded. It is therefore natural to 
suppose that ~ o  has no dependence at all on 4. This leads to theories of 
the type considered by Wagoner (1970) in which there appear only two 

t The term 0" ~b can actually be omitted from the integrand since, within our approxima- 
tions, it is a constant. 
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arbitrary functions of 4 (corresponding to our f ( 4 )  and A@)). Our argu- 
ments give some justification for the 'principle of mutual coupling' postu- 
lated by Wagoner. In fact, a simple transformation of variables (introduce 
a new (metric) tensor field g'~,~ = ~b2gu, in equation (1.8) of Wagoner's 
paper) shows that this principle implies the absence of direct coupling 
between matter and the scalar field. 

2. Inertial  and Gravitational M a s s  

The linear approximation to the vacuum field equations that follow 
from (1.14) and (1.15) is 

- ~'u~ ,~ - 7 v ~  ,~ + 3 # ~ 7 ~  '~'~]  = 

f0'.~: ,~ ;~ ' 
- ~ - ( - / ) o ( 7 . ~ - � 8 9  ) 

• ~:,=.~ _ A'o (40 + ~:) - Ao" 40 ~ = 0 (2.2) 
o~ 

where all the contractions are done with the flat space metric 3 ~". The 
variables yu, and s have been defined by 

1 cx g~'~ = Yu~ - ~zS~vy~ + 3~ (2.3) 

4 = 40 + ~: (2.4) 
and 

fo = f@0)  (2.5) 

f0' =f ' (40)  (2.6) 

where 40 is the asymptotic value of the scalar field. 
We now require that at large distances from their source both gu,  and 4 

approach their asymptotic values (3,v and 4o, respectively) as 1/r. This gives 
a precise definition to what is meant by 'long-range' in hypothesis i). Such a 
behavior of the asymptotic fields is only possible if Ao = Ao' = Ao" = 0. 

Under these conditions the static solutions of equations (2.1) and (2.2) 
are given by 

1 
I 

2 f_~o'̀ 4] gxx =gy~ =g..~ = - 1  - - ( B  - 
r fo ! 

gxy = gy~ = g~x = 0 

B 
goo = 1 - - (2.7) 

r 

A 
4 = 4o + - (2.8) 

r 

where .4 and B are constants. 
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Since the total energy momentum tensor J ' ,~ can be written as a diver- 
gence,~" the inertial mass 

M~ = f J o  ~ d 3 x (2.9) 

can be expressed as a surface integral at infinity. (We assume that our system 
is static or quasistatic so that time derivatives can be neglected.) The surface 
integral can be evaluated by using equations (2.7) and (2.8). The result is 

fo fo' 
M, = ~fo, ( B -  ~o A ) (2.10) 

The gravitational mass is simply 

Mo = B/2Go (2.11) 

which follows from (2.7) if one recalls that test particles may be regarded as 
moving in a potential �89 - 1) which must therefore equal the Newtonian 
potential -Go M/r. The value of the gravitational constant has been 
designated by Go. 

The ratio of  inertial to gravitational mass can then be expressed as 

M~ f0Go (2.12) 
Mo f0'(1 + A/2MI) 

This ratio can be a universal constant only if A/2M~ is a universal constant. 
We will see that this is not the case. By combining equations (1.14) and 
(1.15) the exact field equation satisfied by q~ can be written 

4Af' F2A'+167r(~Pm' _ O.L,(',,\'l f \ -- O, a-~,~) j (2.13) 

If  we integrate both sides of  this equation over all space, the left side can 
be converted into a surface integral with the result 

3(f ')2] [8~rC T +  ~,#~'" oJ m 
4~'A= + f J [ f dp f . f"  f '  

4Af'f \( - 0~-q:'m\l t- 2 t ' +  167r ~, , ' -On~. , ) lV ' ( -g )d3x  (2.14) 

First, we look at the case in which the gravitational energy can be neglected. 
The constant A can be approximated as [using (1.20)] 

A = 2~ f Td3x (2.15) 

where 

~=-foo fo' [2co ~-o + ~ - o  J 3(f0')2] -1 (2.16) 

t Details (for the special case of the Brans-Dicke theory) may be found in Ohanian 
(1971). 
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Mr fo Go 
M G - f o , ( l + ~  f T d g x / f  ToOd, x ) (2.17) 

For static systems in which 0,T~ =0 one has ~ Td3x=.[ To~ and 
therefore 

M, foGo 
MG -- fo'(1 + ~) (2.18) 

The ratio Mx/M~ is then a universal constant, as it should be. By definition 
of Go, this universal constant is unity, i.e., 

Go = f~ + ~) (2.19) 
fo 

Using this expression for Go we obtain MI/Mc for any arbitrary system as 

M,= [1  A=2~M, ]- '  (2.20) 
M~ [ + 23//i(1 + ~)] 

where A is given by equation (2.14). The term A - 2~Mx is of the order of 
magnitude of the gravitational energy and equation (2.20) shows that 
MI/MG will differ from unity by a term of the order of gravitational energy 
divided by Mr. 

3. Conclusions 

In regard to the hypothesis (i), (ii) and (iii) we can say that the first is 
plausible, the second unavoidable and the third is a reasonable generaliza- 
tion of some very precise experimental results. Our conclusions about the 
restrictions on the couplings between the scalar field and matter and about 
the violation of the principle of equivalence must hold in almost any con- 
ceivable scalar-tensor theory. If the measurement of the relative accelera- 
tion of earth and moon by laser ranging (Thorne, 1970) should show that 
the earth's gravitational and inertial masses are equal, this would not only 
be evidence against the Brans-Dicke theory, but also against almost any 
other kind of scalar-tensor theory. 
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